Testing Program and Safety Analysis EPRI International

Ferdinand Panik, Manuel Specker
Luso Ventura*, Lazaro Azedo*

* NETZ Automotiva contracted by EPRI International to conduct the Functional Test Program

Safety and Hazard Analysis

Definition and Objective

A Safety and Hazard Analysis (SHA) is a systematic, comprehensive, and high-level examination of a proposed system's impending hazards. It will identify and classify potential hazards which can occur or contribute to unsafe conditions for the vehicle, environment, or people; both during failure or malfunction situations and during normal operation.

The Safety and Hazard Analysis process is intended as an engineering tool to set system safety design criteria and to help determine the acceptability of a design concept.

SCOPE

The SHA analyzes the following generic potential hazards as derived from the "Basic Guide to System Safety" which was develop and used in the European CUTE (Clean Urban Transportation in Europe) program.
-Accident / Crash / Collision / Rollover
-Fire \& Explosion
-Heat Burns, Steam Burns, and Chemical Burns
-High Pressure Hit
-Electrical shock

- Rotating Equipment, Moving Equipment, and Falling Parts
- Fuelling Hazards
- De-Fuelling Hazards
- Noise
- Environment

Safety Chain Emergency Shut Downs

Definition of red and yellow warning lights for the driver

In the software situations for red and yellow warning lights are defined

Driver instructions:

Yellow - The tour can be finished but the bus has to be checked in the station and once it was shut down it can't be started again without having been checked

Red - the driver has to bring the bus into the next safe spot All safety relevant systems will be shut down automatically

Accelerated Initial Reliability Tests in Caxias

Functional Test Program

 Verification Tests I Verification Tests II
Functional Tests Objectives

\Rightarrow Ensure that the bus is fulfilling all legal and safety requirements necessary for the operation in the EMTU-corridor;
\Rightarrow Ensure that the bus meets the performance specifications and requirements.

Project Challenges

\Rightarrow Features:
\Rightarrow Only one vehicle available;
\Rightarrow Available time to perform the tests;
\Rightarrow Single route application;
\Rightarrow High complexity project;
\Rightarrow Several technical competencies involved;
\Rightarrow Know-how generation to other vehicles;
\Rightarrow Completely new vehicle:
\Rightarrow Propulsion system;
\Rightarrow Further vehicle systems, entirely or partially connected to it;
\Rightarrow Unconventional axles loads distribution;
\Rightarrow Some vehicular systems are either new or have never been largely applied or have no evaluationn in real field application;
\Rightarrow Need for vehicle and systems homologation.

Test Program

\Rightarrow Tests definition:
\Rightarrow Based on a list normally applied to new conventional vehicles
\Rightarrow Criticaly conditions
\Rightarrow Available conditions
\Rightarrow Test Schedule and Meassurements definition:
\Rightarrow Deadlines
\Rightarrow Capacity
\Rightarrow Fuel Logistic
\Rightarrow Resources

Test Program

	TEST CATEGORY	Specificatio n	$\begin{gathered} \text { Technolog } \\ y \\ \hline \end{gathered}$	Homologation	
	Overall Capability				
	Fuel consumption				
	Noise				
	Acceleration				
	Speed recovery				
	Maximum Speed				
	Startability				
	Gradebility				
	Hill holding				
	Service Brake				
	Emergency Brake				
	Parking Brake				
	Brake Fading				
	Regenerative Brake				
	Steering force				- 10 -
		BMLLARD ${ }^{\text {c }}$		Sarcopolo NucELsvs	

CONSORTIUM FOR THE IMPLEMENTATION OF THE PROJECT
"HYDROGEN FUEL CELL BUSES FOR URBAN TRANSPORT IN BRAZIL"

Test Locations

Pass-by-Noise Test

Performed by Marcopolo in Guaporé Race Track.

CONSORTIUM FOR THE IMPLEMENTATION OF THE PROJECT
"HYDROGEN FUEL CELL BUSES FOR URBAN TRANSPORT IN BRAZIL"

Data Logging and Instrumentation

The great amount of information that flows through the vehicle electronic control systems made the performance data collection possible without the need to use complex measuring
\Rightarrow Logged datas:
\Rightarrow Accelerator pedal position;
\Rightarrow Brake pedal position
\Rightarrow Brake pedal force;
\Rightarrow Front and rear axle air pressure;
\Rightarrow Time;
\Rightarrow Engine Power;
\Rightarrow Engine rpm;
\Rightarrow Speed
\Rightarrow The data came from two vehicle CAN lines, a 29bits/250Kbaud and a 11 bits/500Kbaud.
\Rightarrow Some other necessary data to perform the vehicle analysis were obtained processing the data above.
\Rightarrow Instrumentation

RESULTS

RESULTS

Flinep

CONSORTIUM FOR THE IMPLEMENTATION OF THE PROJECT

RESULTS

CONSORTIUM FOR THE IMPLEMENTATION OF THE PROJECT

"HYDROGEN FUEL CELL BUSES FOR URBAN TRANSPORT IN BRAZIL"

TESTS RESULTS SUMARY				
CONTENT	TEST	SPECIFICATIONS	RESULT	VALIDATION
1	Validation of overall capability to operate on the EMTU track		Approved	The vehicle has full capability to operate on the EMTU track as regards tested and analyzed items.
2	Fuel Consumption	TOR: minimum 300km autonomy; $15 \mathrm{~kg} \mathrm{H}{ }^{2} / 100 \mathrm{~km}$.	Approved	$15,72 \mathrm{~kg} \mathrm{H}^{2} / 100 \mathrm{~km}$ average consumption on EMTU track.
3	Noise	CONAMA 272/2000	Approved	The vehicle meets the CONTRAN resolutions concerning to interior and pass-by-noise.
4	Acceleration	The vehicle shall be able to reach the following accelerations on slopes: $\begin{aligned} & 1,10 \mathrm{~m} / \mathrm{s}^{2} @ 0 \% ; \\ & 1,00 \mathrm{~m} / \mathrm{s}^{2} @ 5 \% ; \\ & 0,5 \mathrm{~m} / \mathrm{s}^{2} @ 10 \% ; \\ & 0,1 \mathrm{~m} / \mathrm{s}^{2} @ 15 \% . \end{aligned}$	Approved	The final acceleration results meet the basic technical specification to a 0\%, 5\% and 10\% slope. Due to route availability the test wasn't done on a 15% slope.
5	Speed Recovery	Time required for recovery: from 20 to $60 \mathrm{~km} / \mathrm{h}$; from 40 to $60 \mathrm{~km} / \mathrm{h}$.	Approved	The final acceleration results, numbers and driver feeling, are similar to a Diesel powered vehicle.
6	Maximum Speed	When the vehicle exceeds $55 \mathrm{~km} / \mathrm{h}$, a sound signal shall be activated.	Conditional approval	Vehicle doesn't have a $55 \mathrm{~km} / \mathrm{h}$ excess sound alert signal. This item can be easily solved by either using the vehicle software or a GPS navigation system available on the market.

TESTS RESULTS SUMARY				
CONTENT	TEST	SPECIFICATIONS	RESULT	VALIDATION
7	Startability	The vehicle, at 18,5 t total gross weight condition, shall reach $50 \mathrm{~km} / \mathrm{h}$ at most in 15 seconds.	Approved	The final acceleration results meet the basic technical specification to a 0\% slope, even with 20% overload
8	Gradeability	The vehicle must be able to go down a slope minimum speeds, from the rest position, on a straight line: 60 km/h @ 0\%; 40 km/h @ 5\%; 30 km/h @ 10\%; 20 km/h @ 15\%.	Approved	The vehicle reached a higher speed than the specified to a $0 \%, 5 \%$ and 10% slope. Due to route availability the test wasn't done on a 15% slope.
9	Backward Movement	The vehicle shall be started with an automatically controlled acceleration, regardless of its load and the slope, preventing the backward movement of the vehicle, allowing the motor to be exerted in the limit conditions, without detrimental surges.	Approved	Approved. In both conditions, upward and downward.
10	Service Brake	Test according to CONTRAN 777/93 rules, applied to "Standard Bus", M3 category (vehicle over 8 passengers plus driver with gross total weight over 5 t).	Approved	Deceleration and response time better than the specified.

TESTS RESULTS SUMARY				
CONTENT	TEST	SPECIFICATIONS	RESULT	VALIDATION
11	Emergency Brake	The vehicle must be braked from 60 to $0 \mathrm{~km} / \mathrm{h}$ using only the parking brake, instead of the service brake. A $2,5 \mathrm{~m} / \mathrm{s}^{2}$ average deceleration must be obtained / reached.	Approved	Due to safety reasons in the road test the vehicle as not pushed to the braking limit, however the deceleration value $\left(2,42 \mathrm{~m} / \mathrm{s}^{2}\right)$ was very close to the specification
12	Parking Brake	The vehicle shall remain stationary on a 20% slope at total gross weight condition.	Approved	The parking brake was able to keep the vehicle stopped without using the service brake.
13	Brake Fading	Test according to ABNT NBR 10967 (Based on ECE 13). The vehicle shall be subjected to a 20 times braking cycle from $60 \mathrm{~km} / \mathrm{h}$ to $30 \mathrm{~km} / \mathrm{h}$. The minimum time between each braking (including speed increasing at full power) is $60(-0+10)$ seconds.	Approved	No efficiency loss was observed on the braking cycle. Average deceleration, in Caxias test, greater than the specified. The test was repeated in SP with positive results.
14	Regenerative Brake	The control equipment shall promote a maximum deceleration between $1,0 \mathrm{~m} / \mathrm{s}^{2}$ and $1,3 \mathrm{~m} / \mathrm{s}^{2}$.	Approved	The system was suitable for use and had a much better performance than a conventional engine brake from a Diesel Powered vehicle in this category.
15	Steering Force	The tangential effort applied by the driver, in case of a total loss of hydraulic assistance in any maneuver, shall not be higher than 500 N .	Approved	The average tangential effort applied by the driver, without hydraulic assistance, was $371,6 \mathrm{~N}$. The maximum value was $374,1 \mathrm{~N}$.

Results and Findings

\Rightarrow The results of the tests carried out shows the high level of maturity of the Hydrogen Brazilian Bus project on the tested topics.
\Rightarrow The vehicle responded positively to all trials carried out, generally reacting far beyond the limits established by both norms and the contract.
\Rightarrow During the tests, the Netz technicians and drivers always weaved positive comparative impressions on the H 2 Bus's reactions, especially regarding safety in the operation and general performance.
\Rightarrow It was positively evaluated in the EMTU corridor as its general performance, with a better performance than the conventional diesel powered vehicle fleet.
\Rightarrow The vehicle has full capability to operate on the EMTU track as regards tested and analyzed items.

FJFINEP

Thank you!

